Genomic Imprinting Variations in the Mouse Type 3 Deiodinase Gene Between Tissues and Brain Regions
نویسندگان
چکیده
The Dio3 gene, which encodes for the type 3 deiodinase (D3), controls thyroid hormone (TH) availability. The lack of D3 in mice results in tissue overexposure to TH and a broad neuroendocrine phenotype. Dio3 is an imprinted gene, preferentially expressed from the paternally inherited allele in the mouse fetus. However, heterozygous mice with paternal inheritance of the inactivating Dio3 mutation exhibit an attenuated phenotype when compared with that of Dio3 null mice. To investigate this milder phenotype, the allelic expression of Dio3 was evaluated in different mouse tissues. Preferential allelic expression of Dio3 from the paternal allele was observed in fetal tissues and neonatal brain regions, whereas the biallelic Dio3 expression occurred in the developing eye, testes, and cerebellum and in the postnatal brain neocortex, which expresses a larger Dio3 mRNA transcript. The newborn hypothalamus manifests the highest degree of Dio3 expression from the paternal allele, compared with other brain regions, and preferential allelic expression of Dio3 in the brain relaxed in late neonatal life. A methylation analysis of two regulatory regions of the Dio3 imprinted domain revealed modest but significant differences between tissues, but these did not consistently correlate with the observed patterns of Dio3 allelic expression. Deletion of the Dio3 gene and promoter did not result in significant changes in the tissue-specific patterns of Dio3 allelic expression. These results suggest the existence of unidentified epigenetic determinants of tissue-specific Dio3 imprinting. The resulting variation in the Dio3 allelic expression between tissues likely explains the phenotypic variation that results from paternal Dio3 haploinsufficiency.
منابع مشابه
O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملZinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain.
Previously, we discovered that ZFP57 is a maternal-zygotic effect gene, and it maintains DNA methylation genomic imprint at multiple imprinted regions in mouse embryos. Despite these findings, it remains elusive how DNA methyltransferases are targeted to the imprinting control regions to initiate and maintain DNA methylation imprint. To gain insights into these essential processes in genomic im...
متن کاملA mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10.
Genomic imprinting is a developmental mechanism that mediates parent-of-origin-specific expression in a subset of genes. How the tissue specificity of imprinted gene expression is controlled remains poorly understood. As a model to address this question, we studied Grb10, a gene that displays brain-specific expression from the paternal chromosome. Here, we show in the mouse that the paternal pr...
متن کاملThyroid hormone determines the start of the sensitive period of imprinting and primes later learning
Filial imprinting in precocial birds is the process of forming a social attachment during a sensitive or critical period, restricted to the first few days after hatching. Imprinting is considered to be part of early learning to aid the survival of juveniles by securing maternal care. Here we show that the thyroid hormone 3,5,3'-triiodothyronine (T(3)) determines the start of the sensitive perio...
متن کاملA Method for Similarity Search of Genomic Positional Expression Using CAGE
With the advancement of genome research, it is becoming clear that genes are not distributed on the genome in random order. Clusters of genes distributed at localized genome positions have been reported in several eukaryotes. Various correlations have been observed between the expressions of genes in adjacent or nearby positions along the chromosomes depending on tissue type and developmental s...
متن کامل